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ABSTRACT

Network traffic monitoring has long been a core element for effec-
tive network management and security. However, it is still a chal-
lenging task with a high degree of complexity for comprehensive
analysis when considering multiple variables and ever-increasing
traffic volumes to monitor. For example, one of the widely con-
sidered approaches is to scrutinize probabilistic distributions, but
it poses a scalability concern and multivariate analysis is not gen-
erally supported due to the exponential increase of the complexity.
In this work, we propose a novel method for network traffic moni-
toring based on clustering, one of the powerful deep-learning tech-
niques. We show that the new approach enables us to recognize
clustered results as patterns representing the network states, which
can then be utilized to evaluate “similarity” of network states over
time. In addition, we define a new quantitative measure for the
similarity between two compared network states observed in dif-
ferent time windows, as a supportive means for intuitive analysis.
Finally, we demonstrate the clustering-based network monitoring
with public traffic traces, and show that the proposed approach us-
ing the clustering method has a great opportunity for feasible, cost-
effective network monitoring.

Categories and Subject Descriptors

C.2 [Computer-Communication Networks]: Miscellaneous

General Terms

Management, Measurement
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1. INTRODUCTION

Network traffic monitoring has long been an essential task in
network operations and management for various purposes, such as
network performance measurement and forecasting [27, 18, 13],
traffic classification [16, 10, 19, 6], analysis and visualization [14,
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19], security [26], and so forth. The monitored result and histor-
ical information can be utilized for reconfiguring the network to
optimize performance or to reinforce security. While hard to stress
its importance enough, the basic and undeniable assumption upon
the monitoring work is the irregular property of tracked variables,
which makes it challenging to overlook the current snapshot or to
estimate future states of the network. Moreover, a sophisticated
monitoring task involves a complex degree of analysis against a set
of monitored variables to understand the state of the network com-
prehensively. The network traffic data volume is also a concern for
scalable monitoring. These additional complexities make it infea-
sible to perform in-depth examination as well as timely detection
and response.

A simple form of network traffic monitoring, keeping track of
the volume of incoming/outgoing traffic in the network, would not
be comprehensive, and can only provide a partial characteristic of
the network state. One of the traditional approaches is to scruti-
nize probabilistic distributions of essential variables related to traf-
fic statistics, obtained from the data set collected within a predeter-
mined time interval (known as a time window) [5]. For example,
the distribution of packet lengths can be referred to the characteri-
zation of the network state in the current time window. However, a
non-trivial challenge with this approach is an exponential increase
of computational and storage complexity with additional variables
to be monitored and larger time windows. Since the network ad-
ministrator may want to include multiple traffic-related attributes in
the monitoring process, multivariate analysis is commonly needed
for network monitoring, making it less attractive to employ the
distribution-based monitoring.

In this paper, we propose a novel approach to the network traf-
fic monitoring using clustering, one of the powerful deep-learning
techniques. What makes the new proposed approach unique and
more efficient than traditional approaches is that the clustering me-
thod has the ability to combine multivariate attributes in a straight-
forward manner without an excessive extra cost, which is a critical
challenge when relying on the probabilistic distributions. More-
over, it is possible to construct the deterministic number of clusters
(k > 1) regardless of the number of variables to be tracked, thus
simplifying the monitoring process. In addition, the clustering me-
thod is an unsupervised learning technique which does not require
a prior knowledge and a complicated training process with labeling
that may be even unavailable.

The basic idea of our proposed approach is to recognize clustered
results as patterns that represent the network states. The patterns
can then be utilized to evaluate “similarity” of network states over
time. Since a state consists of a static number of clusters, compar-
ing similarity of given network states can be reduced to a pattern
comparison problem. In this paper, we demonstrate the clustering-



based network monitoring with public traces data, and show the
pattern changes over time with visual representations. In addition
to the changing patterns, we establish a new measure called “de-
gree of changes” to quantitatively gauge the similarity between two
compared states observed in different time windows, as a support-
ive means for intuitive analysis. Our preliminary results indicate
that the new proposed approach using the clustering method has a
great opportunity for feasible, cost-effective network monitoring.

This paper is organized as follows. In Section 2, we provide a
brief summary of relevant studies on network traffic monitoring.
Section 3 presents our initial experiment and its result to examine
the distribution-based monitoring with a public traffic data. In Sec-
tion 4, we introduce our proposed approach based on clustering,
and show how feasible it is for monitoring with our observations
from a set of experiments. Finally, we conclude our presentation in
Section 5 with a summary and future exploration plans.

2. RELATED WORK

Network traffic classification has boosted its importance over the
decade as an effective means of network management and security,
using payload inspection and machine learning (ML) techniques [6,
17]. With the increasing use of encryption and the emphasis on pri-
vacy, the latter approach using flow statistics with no need for in-
specting payloads has been widely studied, with supervised learn-
ing with well-known classifiers [12] and semi-supervised learning
based on clustering [28, 10, 4]. While supervised learning is known
to yield greater accuracy, supplying labelled data is not a trivial re-
quirement, which made clustering to be spot-lighted. However, the
semi-supervised approach also requires such training-purpose data
despite the use of clustering. Although numerous proposals have
been made, network traffic classification has still many challenges,
and a critical one is classification accuracy with limited availability
of traffic traces for testing and the daily emergence of newly intro-
duced applications [6]. In this work, we use clustering but we do
not attempt to classify network traffic; rather we develop a novel
method for network traffic monitoring using clustering.

Probabilistic models and samplings have been considered for
network traffic monitoring, especially for high volume traffic, and
changing data patterns has been studied in streaming network traf-
fic measurements [5]. Network monitoring could use streaming
data mining techniques, and sampling methods and data reduction
techniques were studied by frequency counting [7], histogram [11],
sliding windows [8], random sampling [22], wavelets [20], and di-
mensionality reduction [24]. Many of these sampling methods pro-
vide a quick understanding of the monitored data stream, but char-
acterizing accurate data distribution from the streaming data is still
a challenge, especially with the recent hardware advances, which
produces data records at a much higher rate. In addition, the criti-
cal hurdle is how to combine multiple attributes for comprehensive
analysis rather than single dimensional streaming data analysis, as
we will discuss in detail in the next preliminary study section.

Visualization has also been widely accepted for network man-
agement with the power of intuitive analysis. CAIDA provides a
tool for visualizing the Internet topology using the Autonomous
Systems (ASes) information [1], which is helpful to understand
the interconnectivity of routing systems over the global Internet.
Another tool provides a cyber-security map visualizing global cy-
ber attacks with the source, target, and attack information in real
time [3]. Additionally, the NeTraMark project [19] implemented
tools for BLINK [16] and Traffic Dispersion Graphs [14], mainly
for traffic classification. Through the visualization, we will present
that our new approach based on clustering opens a great opportu-
nity for intuitive analysis.

3. PRELIMINARY STUDY USING DISTRI-
BUTIONS

We define monitoring as an activity that constantly watches the
monitored target to identify its state, for detecting unexpected pat-
terns or sudden changes over time. The target of network moni-
toring would be a local or ISP network, and the administrators an-
alyze the network states using computing tools and collected net-
work traffic statistics.

We assume that the time domain is partitioned by a predeter-
mined fixed interval for the monitored target, and the data collec-
tion for monitoring takes place within a time window W; to de-
termine the associated network state .S;. We also define degree of
changes as the dissimilarity of two states, and use the notation A; ;
for comparing two states S; and S;.

Our approach to examine a state is with the distributions of the
given network traffic attributes. As an initial study, we conducted
experiments to see the effectiveness of probabilistic distributions
for network monitoring, with a public trace UNIBS' collected be-
tween 10AM on September 30 and 2AM on October 1, 2009 [9].
Note that we selected the above time frames without any pref-
erences out of the 3-day trace data set. The average number of
flows is 789 flows/hour with a high degree of variance (min=20,
max=7052).

Figure 1 shows cumulative distributions for two variables (flow
duration and average number of packets in flows) over 16 monitor-
ing time windows, each of which has one-hour in length. From the
figure, we can see that some time windows have somewhat sim-
ilar patterns, while some others show clearly different patterns.
To better understand the characteristics of the given traffic data
set, we analyzed the composition of applications in each window.
The breakdown of applications was performed using the associated
groundtruth data provided together with the traces [25]. We agree
that it is hard to explain the network state only through the com-
positions of applications. However, we believe that it is a good
reference to infer network states. Figure 2 shows the composi-
tions of applications over the time windows. It shows that some
time frames are highly related, such as 11AM-5PM and 8PM-
10PM, with respect to application compositions. In contrast, some
show strongly unrelated breakdowns with other windows, such as
in 10AM, 11PM, 12PM, and 1AM.

From the distributions shown in Figure 1, those related time
windows in the application breakdowns also show similar patterns
(e.g., 11AM-5PM) in the plots. However, some plots do not seem
to agree with the breakdown information. For example, two win-
dows for 12AM and 1AM show a very close pattern although the
compositions of applications for those windows are highly distinc-
tive each other. From the result, network monitoring using distri-
butions would be useful but only to some extent.

In addition to visual monitoring, the degree of changes may be
considered as a supportive information between two time windows,
which can be measured with KS test [2]. However, this approach
would be complicated when considering additional variables [15,
23], hampering comprehensive recognition of patterns.

These challenges motivate us to explore possible alternative ap-
proaches that may have greater potential in scalability and feasi-
bility. As will be introduced in the next section, clustering, with
its strong benefit of aggregation, enables to yield a predetermined
number of clusters regardless of the number of variables consid-
ered in monitoring. Therefore, network monitoring using cluster-
ing would be highly scalable, and provide a consistent way to keep
track of patterns for network states.

"http://www.ing.unibs.it/ntw/tools/traces/
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Figure 1: Cumulative distributions of two network traffic attributes (flow duration and average number of packets in flows) over 16
consecutive time windows, on UNIBS trace between 10AM on Sep. 30, 2009 and 2AM on Oct. 1, 2009.
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Figure 2: Breakdown of applications for time windows (10AM-
1AM), compiled from the associated groundtruth data

4. THE PROPOSED APPROACH

In this section, we present our approach to network monitor-
ing based on clustering. For clustering, we selected the simple K-
means algorithm with its manageable complexity. We first demon-
strate clustering results against the UNIBS data used in the previous
section. The degree of changes measure is introduced next with the
quantitative results.

Figure 3 shows the clustering results for the time windows with
two attributes: flow duration (z-axis) and the number of packets per

flow (y-axis). For the number of clusters, we chose four clusters
since it approximates to the minimal sum of squares within groups
with a relatively small number of clusters. Note that the cluster
IDs and colors in the plots were randomly selected by the tool (R).
As shown in the figure, the clustered results are highly intuitive to
interpret and also to figure out correlated patterns. The clustering
result for I0AM is quite different from the one for 11AM, while the
clustering results for 11AM-5PM look closely similar. The clus-
ter patterns from 8PM to 10PM also show highly similar patterns.
Unlike these, the time frames between 11PM—-1AM show clearly
different and unrelated patterns. Interestingly, we can see that the
clustering results strongly agree with the compositions of applica-
tions, shown in Figure 2.

From Figure 3, we see that the clustering-based monitoring is
helpful to intuitively identify similarity of patterns among time win-
dows. However, some patterns may not be clear enough to deter-
mine similarity of them only through the visual monitoring. Any
quantitative measure would be helpful to perceive the degree of
similarity with greater confidence if provided. We next introduce
the degree of changes (A) that we defined for this purpose, which
measures the gaps between compared clustered results based on
centroid positions of clusters in the Euclidean space.

Suppose two time windows W; and W, and the associated clus-
ter sets C; = {c%,ct,....,cF} and C; = {c?,cjl», ...,c?}, respec-
tively, where k is the number of clusters. Each cluster ¢ has its
centroid pY. Without knowing which cluster in W; is mapped with
one in W, we find a set of pairs showing the minimal move. Sup-
pose a distance function D : C; x C; — R. Then the problem is re-
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Figure 3: Clustering results (light traffic) over 16 consecutive hourly time windows on UNIBS data trace for flow duration on x axis
and average number of packets in flow on y axis, between 10AM on Sep. 30, 2009 and 2AM on Oct. 1, 2009. The number of clusters

is set to 4, based on the minimal sum of squares. Note that cluster ID and colors were selected randomly.

duced to the assignment problem that finds a bijection f : C; — C;
with the minimal distance function:

Aiy =Y D(, f(1)

leC;

Hungarian algorithm is a well-known method for this type of
problem with O(k*) of the computational complexity where k is
the number of clusters [21].

Table 1 shows the degree of changes with statistical significance
obtained from five identical runs on the clustering results in Fig-
ure 3. Note that we used the Euclidean distance to measure cen-
troid moves after normalized. From the table, we observed rela-
tively small degree of changes for time windows in 11AM-6PM
and 8PM-10PM (A < 0.22). In contrast, we observed a high de-
gree of changes in the adjacent windows of (10AM, 11AM), (7PM,
8PM), (11PM, 12AM) and (12AM, 1AM) (A > 1.0), which al-
most agreeing with the observations on the clustered patterns in
Figure 3. The variations are overall insignificant with ¢ < 0.1
except for the first two A’s. From the calculated results, this quan-
titative metric is effective for providing supportive information re-
garding network traffic pattern changes over time.

To further investigate the effectiveness of identifying patterns
and the correlation between the clustered patterns and the metric of
the degree of changes, we experiment on a different data set. In this
experiment, we did not consider application breakdowns, but com-
pared the plotted patterns with the associated quantitative informa-
tion. The new data set is a part of the UNIBS data trace, collected

Table 1: Degree of changes (based on centroid position move)
Windows Average (1) | Std. Dev. (o)
(10AM,11AM) 1.04 0.40
(11AM,12PM) 0.22 0.32
(12PM,1PM) 0.02 0.01
(1PM,2PM) 0.04 0.06
(2PM,3PM) 0.11 0.06
(3PM,4PM) 0.12 0.06
(4PM,5PM) 0.07 0.06
(5PM,6PM) 0.08 0.06
(6PM,7PM) 0.41 0.07
(7PM,8PM) 1.32 0.00
(8PM,9PM) 0.05 0.10
(9PM,10PM) 0.07 0.10
(10PM,11PM) 0.10 0.01
(11PM,12AM) 1.57 0.04
(12AM,1AM) 1.52 0.00

in October 2, 2009. Since the data set includes a relatively large
number of flows, we performed clustering with every five minute
traces from 8:00AM to 9:20AM. The average number of flows is
973 flows/hour with a low variance (min=599, max=1350). The
configuration for clustering is the same as the previous experiment
with four clusters, based on the sum of squares within groups.
Figure 4 demonstrates the clustering results on the 5-minute time
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Figure 4: Clustering results (heavy traffic) on UNIBS data trace, for flow duration on z-axis and average number of packets in flow

on y-axis, between 8AM and 9:20AM on Oct. 2, 2009.

window data set. For ease of presentation, we identify individual
time windows with the unique ID in addition to their beginning
time. As in Figure 3, the figure shows clustered pattern changes
over time with discernible similarity/dissimilarity between windows.
We can see that several time windows such as (3,4), (6,7), (8,9) and
(10,11) look pretty similar. On the other hand, some others such as
(1,2), (2,3), (12,13) and (15,16) show highly different patterns.

Figure 5 shows the corresponding degree of changes. In the fig-
ure, x-axis shows a pair of adjacent windows compared to one an-
other, and y-axis shows the calculated A for the associated pair of
windows (normalized). As shown in the figure, pairs of windows of
(1,2), (4,5), (5,6), (9,10), (12,13) and (15,16) show relatively high
A’s, whereas windows of (3,4), (6,7), (8,9), (10,11) and (13,14) re-
ported minor changes, agreeing in overall with the results of clus-
tered patterns. Although not adjacent, two windows of 1 and 4 look
alike in Figure 4, and its calculated degree of changes is fairly low
with A(174) = 0.34 (not shown in Figure 5). Also, the windows of
(5,11) has a moderate difference of A5 11y = 0.42, supporting the
soundness of the cluster-based pattern representation for monitor-
ing.

The figure also includes a plot (“3 attributes”) with an additional
variable of the number bytes in flows, showing concurring trends
with the other (‘2 attributes”). We observed very negligible vari-
ations (o ~ 0) in this experiment with a relatively large number
of flows in each window, indicating that the impact of randomness
introduced by the K-means algorithm would not be significant with
a sufficiently large number of samples.
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Figure 5: Degree of changes (A) based on the centroid positions
move with the trace from 8AM to 9:20AM on Oct. 2, 2009. All
the observed variances are negligible and almost zeros (¢ ~ 0).

S. CONCLUSIONS

Network traffic monitoring has taken an increasing attention for
effective network management and security with the ever increas-
ing reliance on networked systems and applications. In this paper,
we proposed a novel method for effective network traffic monitor-
ing using the clustering technique with the powerful capability for
combining multivariate attributes in a straightforward manner. We



examined the feasibility of the clustering-based traffic monitoring
with visualization for intuitive analysis, and presented our analysis
on the clustering results with the compositions of applications. In
addition, we defined a new measure of degree of changes to quan-
titatively evaluate the similarity between two compared network
states, and showed that the new measure yields overall agreeable re-
sults with the visual patterns, implying that the new measure can be
a helpful supportive means for better understanding network states.

This work is in-progress, and there exist many interesting chal-
lenges needed further exploration. In this study, we employed cen-
troid positions for estimating degree of changes between two time
windows, but additive information could be considered for this
measure, such as radius-related variables for taking the size of clus-
ters into account. The public traces we have used in this work were
collected in a local area network, and the traffic volume and data
frequency can be much greater in a large-scale setting. In such
an environment, real-time monitoring with clustering could be a
challenging task, and we would like to develop a method for the
scalable monitoring service. Another piece of future exploration
is about the impact of monitored variables. In this work, we have
used flow-level statistics due to the availability of the correspond-
ing groundtruth data. However, other types of attributes such as
packet-level information could also be helpful for defining network
states, and investigating extensive sets of variables would be nec-
essary to see their impacts.
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